Part Number Hot Search : 
ACAC0612 684M3 23100 100E1 23100 ALVCH 23100 000MT
Product Description
Full Text Search
 

To Download LTC5562 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  lt c5562 1 5562f for more information www.linear.com/LTC5562 typical application features description lf?7ghz wideband low power active mixer the lt c ? 5562 is a versatile low power mixer optimized for applications requiring wide input bandwidth, low distor - tion and low lo leakage. this mixer can be used for either upconverting or downconverting applications, and provides a nominal conversion gain of 1db. the differential input is optimized for use with a 1:1 transmission-line balun, the input is 50 broadband matched from 30mhz to 7ghz. the lo can be differential or single-ended and requires only ?1dbm of lo power to achieve excellent distortion and noise performance. the impedance match at the lo input is maintained during shutdown. this mixer offers low lo leakage, greatly reducing the need for output filtering to meet lo suppression requirements. the LTC5562 uses a 3.3v supply for low power consump - tion and the enable control allows the part to be shut down for further power savings. the total mixer current is adjustable, by simply adding a resistor in series with the lgnd pin, for applications requiring even lower power. 3.6ghz upconverting mixer conversion gain, oip3 and nf vs f out p lo = ?2dbm, i total = 35ma (r1 = 5) applications n wideband frequency range to 7ghz n low power: 2.7v to 3.6v, 40ma supply n supply current adjustable down to 15ma n up or downconversion n oip3: +20dbm at 3.6ghz out n conversion gain: +1db n low lo drive: ?4dbm to +2dbm n lo impedance match maintained during shutdown n enable control, 10a shutdown current n 2kv esd (hbm and cdm) n ?40c to 105c operation n small 2mm 2mm 10-lead qfn package n portable radios n portable test instruments n wireless infrastructure n fixed wireless access equipment n vhf & uhf mixer n wireless repeaters all registered trademarks and trademarks are the property of their respective owners. gain nf oip3 low side lo f in = 240mhz v cc = 3.3v t c = ? 40c 25c 85c 105c output frequency (mhz) 3400 3600 3800 4000 4200 4400 ?2 0 2 4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24 26 28 30 gain (db), oip3 (dbm) nf (db) lo total 5562 ta01a + ? 240mhz in 50 t1 1:1 tc1-1-13 1nf 3.6nh 2.7nh in + lo + out + out ? lo ? 1nf lgnd en gnd v cc LTC5562 bias 10nf 1f 1.2pf 1.2pf 3.6nh v cc ncs4-442 + 3.6ghz out t2 4:1 1.5nh 0.9pf 10pf 100pf 5562 ta01a 3.36ghz lo 50 in ? en r1
lt c5562 2 5562f for more information www.linear.com/LTC5562 pin configuration absolute maximum ratings supply voltage (v cc , out + , out ? ) .......................... 4.0v en voltage ........................................ ? 0.3v to v cc + 0.3v lo + , lo ? input power ........................................ + 10dbm in + , in ? input power .......................................... + 15dbm operating temperature range (t c ) ........ ? 40 c to 105 c junction temperature (t j ) .................................... 150 c storage temperature range .................. ? 65 c to 150 c (note 1) 10 9 8 3 4 5 top view 11 uc package 10-lead (2mm 2mm) plastic qfn 6 7 2 1 lo + lo ? gnd v cc lgnd in + in ? en out + out ? t jmax = 150c, jc = 25c/w exposed pad (pin 11) is gnd, must be soldered to pcb order information lead free finish tape and reel part marking package description temperature range LTC5562iuc#pbf LTC5562iuc#trpbf lgzq 10-lead (2mm 2mm) plastic qfn ?40c to 105c consult adi marketing for parts specified with wider operating temperature ranges. consult adi marketing for information on lead based finish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. some packages are available in 500 unit reels through designated sales channels with #trmpbf suffix. http://www.linear.com/product/LTC5562#orderinfo
lt c5562 3 5562f for more information www.linear.com/LTC5562 ac electrical characteristics dc electrical characteristics parameter conditions min typ max units lo input frequency range external matching required l lf-9 ghz input frequency range external matching required l lf-7 ghz output frequency range external matching required l dc-7 ghz input return loss z o = 50, external matching required below 30mhz >12 db lo input return loss z o = 50, external matching required >10 db output impedance differential at 900mhz differential at 3.5ghz differential at 5.8ghz 650 || 0.3pf 350 || 0.3pf 120 || 0.3pf r || c r || c r || c lo input power single-ended or differential ?4 ?1 2 dbm lo to in leakage f lo = 1mhz to 1.8ghz f lo = 1.8ghz to 4.5ghz f lo > 4.5ghz < ?45 < ?35 < ?30 dbm dbm dbm lo to out leakage f lo = 1mhz to 1.8ghz f lo = 1.8ghz to 4.4ghz f lo > 4.4ghz < ?37 < ?35 < ?30 dbm dbm dbm parameter conditions min typ max units supply voltage (v cc ) l 2.7 3.3 3.6 v supply current, en = high r1 = 0 r1 = 10 r1 = 20 r1 = 60 40 30 25 15 46 ma supply current, en = low shutdown 10 a enable logic input (en) en input high voltage (on) l 1.8 v en input low voltage (off) l 0.5 v en input current ?0.3v to v cc + 0.3v l ?15 25 a turn-on time 0.1 s turn-off time 0.5 s the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at v cc = 3.3v, en = high, t c = 25 c , p lo = ? 1dbm, r1 = 0. test circuits shown in figures 1 and 2. (notes 2, 3, 4) the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at v cc = 3.3v, t c = 25c. test circuits shown in figures 1 and 2. (note 2)
lt c5562 4 5562f for more information www.linear.com/LTC5562 ac electrical characteristics upconverting applications parameter conditions min typ max units conversion gain f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 0.3 1.5 1 2 db db db conversion gain vs temperature t c = ?40c to 105oc, f out = 3.6ghz l ?0.01 db/c two-tone output 3rd order intercept (?f = 2mhz) f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 18 21 19 17 dbm dbm dbm two-tone output 2nd order intercept ?f in = 141mhz, f out = 900mhz, high side lo ?f in = 241mhz, f out = 3.6ghz, low side lo ?f in = 901mhz, f out = 5.8ghz, low side lo 36 36 31 dbm dbm dbm ssb noise figure f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 13.5 14.6 15.9 db db db output noise floor at p in = 0dbm f in = 240mhz, f out = 3.6ghz, low side lo ?157 dbm/hz input 1db compression f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 6 5 4.5 dbm dbm dbm lo-out leakage f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo ?37 ?35 ?30 dbm dbm dbm lo-in leakage f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo ?50 ?39 ?30 dbm dbm dbm in to out isolation f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 65 68 68 db db db in-lo isolation f in = 140mhz, f out = 900mhz, high side lo f in = 240mhz, f out = 3.6ghz, low side lo f in = 900mhz, f out = 5.8ghz, low side lo 60 56 62 db db db the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c . v cc = 3.3v, en = high, p in = ? 12dbm ( ? 12dbm /tone for 2-tone tests), p lo = ? 1dbm, r1 = 0 , unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4)
lt c5562 5 5562f for more information www.linear.com/LTC5562 ac electrical characteristics downconverting applications parameter conditions min typ max units conversion gain f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 1.9 2 2 db db db conversion gain vs temperature t c = ?40c to 105c, f out = 3.6 ghz l ?0.01 db/c two-tone input 3rd order intercept (?f = 2mhz) f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 19 16 14 dbm dbm dbm ssb noise figure f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 13.9 14.2 14.6 db db db output noise floor at p in = 0dbm f in = 3.6ghz, f out = 350mhz, low side lo ?158 dbm/hz input 1db compression f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 7 6 5.5 dbm dbm dbm lo-out leakage f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo ?45 ?55 ?45 dbm dbm dbm lo-in leakage f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo ?55 ?38 ?39 dbm dbm dbm in to out isolation f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 50 60 44 db db db in-lo isolation f in = 900mhz, f out = 140mhz, high side lo f in = 3.6ghz, f out = 456mhz, high side lo f in = 5.8ghz, f out = 800mhz, low side lo 42 39 58 db db db 1/2 if output spurious product f in = 5400mhz, f lo = 5000mhz, f spur = 800mhz ?62 dbc 1/3 if output spurious product f in = 5249.67hz, f lo = 4983mhz, f spur = 800mhz ?82 dbc the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c . v cc = 3.3v, en = high, p rf = ? 12dbm ( ? 12dbm /tone for 2-tone tests), p lo = ? 1dbm, r1 = 0 . test circuit shown in figure 2. (notes 2, 3, 4) note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the LTC5562 is guaranteed functional over the ?40c to 105c case temperature range. note 3: ssb noise figure measured with a small-signal noise source, bandpass filter and 3db matching pad on in port, and bandpass filter on the lo input. note 4: specified performance includes all external components and evaluation pcb losses.
lt c5562 6 5562f for more information www.linear.com/LTC5562 typical dc performance characteristics typical performance characteristics supply current (en = high) vs supply voltage shutdown current (en = low) vs supply voltage conversion gain distribution oip3 distribution noise figure distribution (test circuit shown in figure 1) 900mhz upconverting application: v cc = 3.3vdc , t c = 25c, f in = 140mhz, p in = ?12dbm (?12dbm/tone for 2-tone oip3 tests, ?f = 2mhz). p lo = 0dbm, f lo = f in + f out , high side lo, output measured at 900mhz, r1 = 0, unless otherwise noted. supply voltage (v) 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 36 37 38 39 40 41 42 supply current (ma) current (en = high) vs supply voltage 5562 g01 t c = ?40c 25c 85c 105c supply voltage (v) 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 0 2 4 6 8 10 12 14 16 18 20 supply current (a) 5562 g02 c = ?40c 25c 85c 105c t conversion gain (db) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 0 10 20 30 40 50 60 distribution (%) 5562 g03 output = 900mhz 105c 25c ?40c oip3 (dbm) 18 19 20 21 22 23 24 0 5 10 15 20 25 30 35 distribution (%) 5562 g04 output = 900mhz 105c 25c ?40c noise figure (db) 12 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2 0 5 10 15 20 25 30 35 40 45 50 distribution (%) 5562 g05 output = 900mhz 105c 25c ?40c
lt c5562 7 5562f for more information www.linear.com/LTC5562 conversion gain, oip3 and nf vs input frequency, f out = 900mhz conversion gain, oip3 and nf vs output frequency, f in = 140mhz lo isolation vs lo frequency conversion gain, oip3 and nf vs lo power conversion gain, oip3 and nf vs supply current conversion gain, oip3 and nf vs supply voltage 2-tone output and im3 power vs input power input isolation vs frequency conversion gain, oip3 and nf vs case temperature typical performance characteristics 900mhz upconverting application: v cc = 3.3vdc , t c = 25c, f in = 140mhz, p in = ?12dbm (?12dbm/tone for 2-tone oip3 tests, ?f = 2mhz). p lo = ?1dbm, f lo = f out + f in , high side lo, output measured at 900mhz, r1 = 0, unless otherwise noted. test circuit shown in figure 1. oip3 nf gain input frequency (mhz) 0 100 200 300 400 500 600 700 800 0 5 10 15 20 25 30 gain and nf (db), oip3 (dbm) conversion gain, oip3 and nf vs input frequency, f out = 900mhz 5562 g06 t c = ?40c 25c 85c 105c gain nf oip3 output frequency (mhz) 700 800 900 1000 1100 1200 1300 1400 ?5 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) in 5562 g07 t c = ?40c 25c 85c 105c lo ? in lo ? out 2 lo ? out lo frequency (mhz) 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 10 20 30 40 50 60 70 80 90 isolation (db) lo isolation vs lo frequency 5562 g08 oip3 nf gain lo power (dbm) ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 ?5 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) conversion gain, oip3 and nf vs lo power 5562 g09 t c = ?40c 25c 85c 105c supply current (ma) 20 22 24 26 28 30 32 34 36 38 40 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) conversion gain, oip3 and nf vs supply current 5562 g10 refer to table 7 for additional r1 values 20ma: r1 = 34 gain oip3 nf 40ma: r1 = 0 oip3 nf gain supply voltage (v) 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) vs supply voltage 5562 g11 t c = ?40c 25c 85c 105c input power (dbm/tone) ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 10 output power (dbm/tone) 5562 g12 f in1 = 139mhz f in2 = 141mhz f lo = 1040mhz im3 out in ? out in ? lo input frequency (mhz) 0 100 200 300 400 500 600 700 800 900 10 20 30 40 50 60 70 80 90 isolation (db) 5562 g13 case temperature (c) ?45 ?15 15 45 75 105 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) vs case temperature 5562 g14 gain oip3 nf
lt c5562 8 5562f for more information www.linear.com/LTC5562 conversion gain, oip3 and nf vs input frequency, f out = 3.6ghz conversion gain, oip3 and nf vs output frequency, f in = 240mhz lo isolation vs lo frequency conversion gain, oip3 and nf vs lo power conversion gain, oip3 and nf vs supply current conversion gain, oip3 and nf vs supply voltage 2-tone output and im3 power vs input power input isolation vs frequency conversion gain, oip3 and nf vs case temperature typical performance characteristics 3.6ghz upconverting application: v cc = 3.3vdc , t c = 25c, f in = 240mhz, p in = ?12dbm (?12dbm/tone for 2-tone oip3 tests, ?f = 2mhz). p lo = ?1dbm, f lo = f out ? f in , low side lo, output measured at 3.6ghz, r1 = 0, unless otherwise noted. test circuit shown in figure 1. oip3 nf gain input frequency (mhz) 50 100 150 200 250 300 350 400 450 ?5 0 5 10 15 20 25 30 gain and nf (db), oip3 (dbm) vs input frequency, f out = 3.6ghz 5562 g15 t c ?40c 25c 85c 105c gain nf oip3 output frequency (mhz) 3400 3600 3800 4000 4200 4400 ?5 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) in 5562 g16 t c = ?40c 25c 85c 105c lo frequency (mhz) 1600 2000 2400 2800 3200 3600 4000 4400 0 10 20 30 40 50 60 70 isolation (db) lo isolation vs lo frequency 5562 g17 lo ? in lo ? out 2 lo ? out oip3 nf gain t c = ?40c 25c 85c 105c lo power (dbm) ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 ?5 0 5 10 15 20 25 30 gain and nf (db), oip3 (dbm) vs lo power 5562 g18 oip3 nf supply voltage (v) 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 ?5 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) vs supply voltage 5562 g20 gain t c = ?40c 25c 85c 105c input power (dbm/tone) ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 10 output power (dbm/tone) 5562 g21 f = 239mhz f = 241mhz lo = 3360mhz im3 out in1 in2 f in ? out in ? lo input frequency (mhz) 0 400 800 1200 1600 2000 10 20 30 40 50 60 70 80 90 isolation (db) input isolation vs frequency 5562 g22 case temperature (c) ?45 ?15 15 45 75 105 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) vs case temperature 5562 g23 gain oip3 nf supply current (ma) 20 22 24 26 28 30 32 34 36 38 40 0 5 10 15 20 25 gain and nf (db), oip3 (dbm) 5562 g19 20ma: r1 = 35 gain oip3 nf 40ma: r1 = 0 refer to table 7 for additional r1 values
lt c5562 9 5562f for more information www.linear.com/LTC5562 conversion gain, oip3 and nf vs input frequency, f out = 800mhz conversion gain, oip3 and nf vs output frequency, f in = 5800mhz lo isolation vs lo frequency conversion gain, oip3 and nf vs lo power conversion gain, oip3 and nf vs supply current conversion gain, oip3 and nf vs supply voltage 2-tone output and im3 power vs input power single tone output power, 22 and 33 spurs vs input power conversion gain, oip3, nf and vs case temperature typical performance characteristics 5.8ghz downconverting application: v cc = 3.3vdc , t c = 25c, f in = 5.8ghz, p in = ?12dbm (?12dbm/tone for 2-tone oip3 tests, ?f = 2mhz). p lo = ?1dbm, f lo = f in ? f out low side lo, r1 = 0, output measured at 800mhz, unless otherwise noted. test circuit shown in figure 2. gain nf oip3 output frequency (mhz) 100 300 500 700 900 1100 ?4 ?2 0 2 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 20 22 24 26 gain (db), oip3 (dbm) nf (db) vs output frequency, f in = 5800mhz 5562 g25 c = ?40c 25c 85c 105c t lo ? in lo ? out 2 lo ? out lo frequency (mhz) 4300 4500 4700 4900 5100 5300 5500 5700 10 20 30 40 50 60 70 80 90 isolation (db) lo isolation vs lo frequency 5562 g26 oip3 nf gain lo power (dbm) ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 6 ?6 ?4 ?2 0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 gain (db), oip3 (dbm) nf (db) vs lo power 5562 g27 t c = ?40c 25c 85c 105c oip3 nf supply voltage (v) 2.6 2.8 3.0 3.2 3.4 3.6 0 2 4 6 8 10 12 14 16 18 20 5 7 9 11 13 15 17 19 21 23 25 gain (db), oip3 (dbm) nf (db) 5562 g29 t c = ?40c 25c 85c 105c gain input power (dbm/tone) ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 10 output power (dbm/tone) vs input power 5562 g30 f in1 = 5799mhz f in2 = 5801mhz f lo = 5000mhz im3 out 3 in ? 3 lo (f in = 5266.67mhz) (f in = 5400mhz) 2 in ? 2 lo (f in = 5800mhz) out t c = 25c f lo = 5000mhz input power (dbm) ?16 ?14 ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 10 output power (dbm) 5562 g31 gain oip3 nf case temperature (c) ?45 ?15 15 45 75 105 0 2 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 22 24 gain (db), oip3 (dbm) nf (db) vs case temperature 5562 g32 oip3 nf gain input frequency (mhz) 5100 5300 5500 5700 5900 6100 0 2 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 22 24 gain (db), oip3 (dbm) nf (db) vs input frequency, f out = 800mhz 5562 g24 t c = ?40c 25c 85c 105c 40ma: r1 = 0 20ma: r1 = 34 refer to table 7 for additional r1 values gain oip3 nf supply current (ma) 20 22 24 26 28 30 32 34 36 38 40 0 2 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 20 22 gain (db), oip3 (dbm) nf (db) 5562 g28
lt c5562 10 5562f for more information www.linear.com/LTC5562 pin functions lo + , lo ? (pins 1, 2): differential lo input. the lo input impedance is approximately 220, thus external imped - ance matching is recommended. an internal v cc referenced bias voltage is provided to the lo inputs, therefore, dc blocking capacitors are required. the LTC5562 is char - acterized and production tested with a single-ended lo drive; though a differential lo drive can be used. en (pin 3) : enable pin. the LTC5562 is enabled when the applied voltage on this pin is greater than 1.8v. an applied voltage less than 0.5v will disable the ic. the voltage on the en pin should never exceed v cc by more than 0.3v. out + , out ? (pins 4, 5): differential output. external components are required for impedance matching and differential to single-ended conversion. these pins require a low resistance dc path to v cc to provide current to the mixer core. typical dc current consumption is 18ma for each pin. v cc (pin 6) : power supply pin. the supply range is 2.7v to 3.6v . this pin should be bypassed with a 10nf capaci - tor located close to the ic. a low impedance power plane is recommended. typical current consumption is 4.8ma. gnd (pins 7, 11(exposed pad)): ground. these pins must be soldered to the rf ground plane on the circuit board. the exposed pad on the package provides both electrical contact to the ground and a good thermal contact to the printed circuit board. in ? , in + (pins 8, 9) : differential signal input. for optimum performance these pins should be driven with a differential signal. the input can be driven single-ended, with some performance degradation, by connecting the unused pin to rf ground through a capacitor. an internally generated 1.65v ground referenced bias voltage is present on these pins, thus dc blocking is required. lgnd (pin 10): dc ground return for the input amplifier. for the best performance, this pin must be connected to a good low impedance ground. the typical current from this pin is 36ma. for some applications, an external resistor may be used to reduce the total current in the mixer core, which could affect performance.
lt c5562 11 5562f for more information www.linear.com/LTC5562 block diagram in ? in + lo + out + en 5562 bd out ? lo ? lgnd gnd v cc LTC5562 + ? 11 7 6 5 4 3 2 1 10 9 8 bias
lt c5562 12 5562f for more information www.linear.com/LTC5562 test circuits ref des value size vendor c1, c2, c3, c8, c9, c10, c11 cap, 1000pf 0402 murata grm series c12 cap, 2.2f 0603 murata grm series r1 0 0402 t1 xfmr, 1:1 (4.5mhz ? 3000mhz) at224-1 mini-circuits tc1-1-13m+ f in = 140mhz, f lo = 1040mhz, f out = 900mhz c6, c7 cap, 1.5pf 0402 murata grm series c4 not used 0402 c5 cap, 100pf 0402 murata grm series l1, l2, l3 ind, 40nh 0402 coilcraft 0402hp series l4 ind, 7.5nh 0402 coilcraft 0402hp series t2 xfmr, 4:1 (800mhz ? 2.6ghz) 0805 anaren model bd0826j50200ahf f in = 240mhz, f lo = 3.36ghz, f out = 3.6ghz* c4, c6, c7 cap, 1.2pf 0402 murata grm series c5 cap, 10pf 0402 murata grm series l1, l2, l3 ind, 3.6nh 0402 coilcraft 0402hp series l4 ind, 1.5nh 0402 murata lqg16hs1n5 t2 xfmr, 4:1 (3.3ghz ? 4.2ghz) ge0805c-1 mini-circuits ncs4-442+ f in = 900mhz, f lo = 4.9ghz, f out = 5.8ghz c6, c7 cap, 100pf 0402 murata grm series c4 cap, 0.2pf 0402 murata gjm series c5 cap, 0.5pf 0402 murata gjm series l2, l3 ind, 3.9nh 0402 coilcraft 0402hp series l1, l4 ind, 1nh 0402 coilcraft 0402hp series t2 xfmr, 4:1 (4.5ghz ? 6ghz) ge0805c-1 mini-circuits ncs4-63+ *standard evaluation board schematic, dc2483a-a figure 1. low power upconverting mixer test schematic rf dc2483a-a evaluation board stack-up (rogers ro4003c) gnd gnd bias 0.062? 0.012? 0.016? en c1 l2 l1 c2 c11 c12 c6 c7 l3 v cc out 50 l4 c4 c5 c3 5562 f01 lo 50 c8 nc in 50 t1 1:1 r1 t2 4:1 c9 123 654 c10 v cc in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8
lt c5562 13 5562f for more information www.linear.com/LTC5562 test circuits ref des value size vendor c1, c2, c4, c9, c10 cap, 1000pf 0402 murata grm series c11, c12 cap, 10nf, 10%, x5r, 10v 0402 murata grm series c13 cap, 2.2f 0603 murata grm series r1 0 0402 f in = 900mhz, f lo = 1040mhz, f out = 140mhz* c3, c5, c7, c8 not used c6 cap, 1000pf 0402 murata grm series l2, l3 ind, 100nh 0402 coilcraft 0402af l1 ind, 7.5nh 0402 coilcraft 0402hp t1 xfmr, 1:1 (4.5mhz ? 3000mhz) at224-1 mini-circuits tc1-1-13m+ t2 xfmr, 8:1 (2mhz ? 500mhz) at224-1 mini-circuits tc8-1-10ln+ f in = 3.5ghz, f lo = 3.044ghz, f out = 456mhz l2, l3 cap, 3.3pf 0402 murata grm series c3 not used c5 cap, 0.9pf 0402 murata grm series c6 cap, 10pf 0402 murata grm series c7, c8 ind, 56nh 0402 coilcraft 0402hp l1 ind, 1.5nh 0402 murata lqg15hs1n5 t1 xfmr, 1:1 (10mhz ? 8000mhz) db1627-1 mini-circuits tcm1-83x+ t2 xfmr, 4:1 (10mhz ? 1900mhz) db714 mini-circuits tcm4-19 f in = 5.8ghz, f lo = 4.9ghz, f out = 800mhz c7, c8 not used c3, c6 cap, 0.5pf 0402 murata grm series c5 cap, 0.2pf 0402 murata grm series l2, l3 ind, 33nh 0402 coilcraft 0402hp l1 ind, 1.0nh 0402 coilcraft 0402hp t1 xfmr, 1:1 (10mhz ? 8000mhz) db1627-1 mini-circuits tcm1-83x+ t2 xfmr, 4:1 (10mhz ? 1900 mhz) db714 mini-circuits tcm4-19 *standard evaluation board schematic, dc2483a-b figure 2. low power downconverting mixer test schematic rf dc2483a-b evaluation board stack-up (rogers ro4003c) gnd gnd bias 0.062? 0.012? 0.016? en c1 c2 c12 c13 l1 c5 c6 c4 5562 f02 lo 50 in 50 t1 1:1 c3 r1 l2 l3 out 50 c10 c9 t2 c11 c7 c8 v cc in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8
lt c5562 14 5562f for more information www.linear.com/LTC5562 introduction the LTC5562 is a general purpose, low power double balanced mixer. it can be configured as an upconverting or downconverting mixer that can be used in wideband or narrowband applications. a differential common emitter stage at the mixer input allows for very broadband input matching. the in port is differential but can be driven with a single-ended signal simply by adding a bypass cap to rf ground on one of the input pins. however, for best performance, the in pins should be configured differentially. the lo port is differential, but can be driven with a single-ended signal, as well, simply by adding a bypass cap to rf ground on one of the input pins. lo leakage will be reduced if the lo is driven differentially. additionally, low side or high side injection can be used on the lo port. the out ports have a higher impedance, designed to provide conversion gain while maintaining good linearity with lower current. external components are required to optimize the imped - ance match for the desired frequency range. see the pin applications information functions and block diagram sections for a description of each pin. the upconverting test circuit, shown in figure 1, utilizes bandpass matching and a 4 : 1 multilayer chip balun to realize a single-ended output. the downconverting test circuit, in figure 2, uses a 8 :1 wire-wound balun. the outputs may also be used to provide a differential signal, if dc blocking capacitors are used to isolate the output. test circuit schematics showing all external components required for the data sheet specified performance are shown in figures1 and 2. additional components may be used to modify the dc supply current or frequency response, which will be discussed in the following sections. the LTC5562 can be powered down by applying a low logic signal to the en pin. bias voltages are maintained during shutdown to enable a fast turn-on time. the part will default to shutdown mode if the en pin is left floating. the upconverting and downconverting evaluation boards are shown in figures 3(a) and 3(b). (a) upconversion (dc2483a-a) (b) downconversion (dc2483a-b) figure 3. LTC5562 evaluation board layouts
lt c5562 15 5562f for more information www.linear.com/LTC5562 applications information figure 5. in port return loss figure 4. in port with external matching in port interface a simplified schematic of the mixer?s input is shown in figure 4. the in + and in ? pins drive the bases of the input amplifier and internal resistors are used for impedance matching. these pins are internally biased to a common mode voltage of 1.65v, thus capacitors c1 and c2 provide dc isolation and can be used for impedance matching. a small value capacitor, c3, can be used to improve the im - pedance match at higher frequencies. the 1: 1 transformer, t1, provides the single-ended to differential conversion. in v cc v bias v bias t1 c3 c1 1nf LTC5562 c2 1nf in ? in + lgnd 5562 f04 1:1 8 9 10 v cc v cc the typical return loss at the in port is shown in figure 5 for a selection of 1:1 transformers. adding a 0.5pf capaci - tor at c3 will extend the impedance match. table 1. in port differential impedance freq (mhz) impedance () refl. coeff. real* imag* parallel equivalent mag ang () 10 133.3 ?159.0 100.1pf 0.50 ?39.6 100 73.3 ?740.2 2.1pf 0.19 ?14.3 500 72.1 ?1376.5 0.2pf 0.18 ?8.0 1000 71.5 ?779.7 0.2pf 0.18 ?14.2 1500 70.6 ?498.5 0.2pf 0.18 ?22.3 2000 68.1 ?353.5 0.2pf 0.17 ?32.7 2500 63.6 ?249.3 0.3pf 0.16 ?49.6 3000 59.3 ?163.6 0.3pf 0.18 ?72.3 3500 58.4 ?110.3 0.4pf 0.25 ?86.1 4000 63.5 ?84.7 0.5pf 0.33 ?88.5 4500 72.8 ?77.3 0.5pf 0.40 ?85.2 5000 78.3 ?76.0 0.4pf 0.43 ?83.1 5500 77.5 ?74.9 0.4pf 0.43 ?84.1 6000 71.7 ?72.3 0.4pf 0.41 ?88.6 6500 63.8 ?68.1 0.4pf 0.40 ?96.0 7000 54 ?62.6 0.4pf 0.39 ?107.2 7500 43.2 ?56.6 0.4pf 0.38 ?122.3 8000 33.4 ?49.9 0.4pf 0.42 ?138.3 * parallel equivalent impedance c1 = c2 = 1nf c3 = open c3 = open c3 = 0.5pf t1=tc1?1?13m+ t1=tcm1?83x+ t1=tcm1?83x+ input frequency (mhz) 0 1000 2000 3000 4000 5000 6000 7000 8000 ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 return loss (db) in port return loss vs frequency 5562 f05 parallel equivalent differential input impedances for various frequencies are listed in table 1. at frequencies below 30mhz , the impedance match is limited by internal capacitors, thus additional external components may be needed to optimize the input impedance. the tail current of the input amplifier flows through pin10(lgnd). typically this pin should be directly con - nected to ground ; however, a resistor can be connected between lgnd and the board ground plane to reduce the total current consumption of the LTC5562. see lgnd (reduced current) section for more information.
lt c5562 16 5562f for more information www.linear.com/LTC5562 applications information lo input interface the LTC5562 can be driven by a single-ended or dif - ferential lo. for the performance shown in the electrical characteristics tables and the typical performance curves, the lo is driven single-ended. if driven differentially, the lo to out leakage may improve. the lo input pins are internally biased to a v cc referenced voltage, thus external capacitors are required to provide dc isolation. external components are required to optimize the impedance match for the desired frequency range. the impedance match will be maintained when the part is disabled, as well. table 2 lists the single-ended input impedance and reflec - tion coefficient vs frequency for the lo input, configured as shown in figure 6. the differential impedance versus frequency are shown in table 3. figure 6. lo input schematic table 3. differential lo input impedance freq (mhz) impedance () refl. coeff. real imag parallel equivalent mag ang () 10 222.3 ?5085.3 3.1pf 0.63 ?1.2 100 208.3 ?2039.9 0.8pf 0.61 ?3 500 201.4 ?410.5 0.8pf 0.61 ?14.8 1000 181.7 ?200 0.8pf 0.59 ?30.1 1500 155.7 ?127.7 0.8pf 0.57 ?46.5 2000 128.6 ?88.6 0.9pf 0.56 ?64.8 2500 104.5 ?63.4 1pf 0.56 ?84.6 3000 93.3 ?49.1 1.1pf 0.61 ?99 3500 97.8 ?43.3 1.1pf 0.66 ?104.5 4000 99.6 ?40.2 1pf 0.69 ?107.8 4500 77 ?36.7 1pf 0.66 ?115.1 5000 46.5 ?31.4 1pf 0.61 ?130.2 5500 25.7 ?28.0 1pf 0.59 ?149.1 6000 15.2 ?31.6 0.8pf 0.61 ?165.6 6500 11.9 ?243.2 0.1pf 0.62 ?178.6 7000 11.3 73.5 1.7nh 0.64 ?184.1 7500 11.2 64.8 1.4nh 0.64 ?184.5 8000 10.7 ?109.2 0.2pf 0.65 ?177.5 8500 12.1 ?53.5 0.4pf 0.63 ?173.8 9000 15.1 ?100.4 0.2pf 0.55 ?174.4 9500 21.2 62.7 1.1nh 0.46 ?197.0 1 2 v cc LTC5562 lo + lo ? 1nf 5562 f06 table 2. single-ended lo input impedance freq (mhz) impedance () refl. coeff. real imag parallel equivalent mag ang () 10 195.29 ?2576.34 6.18pf 0.59 ?2.38 100 146.83 ?414.95 3.84pf 0.5 ?15.49 500 109.66 ?231.63 1.37pf 0.4 ?30.07 1000 97.6 ?134.35 1.18pf 0.39 ?51.17 1500 83.74 ?88.92 1.19pf 0.41 ?73.77 2000 69.2 ?61.86 1.29pf 0.45 ?96.19 2500 55.43 ?43.99 1.45pf 0.51 ?115.94 3000 46.27 ?33.62 1.58pf 0.58 ?128.66 3500 41.73 ?28.88 1.57pf 0.62 ?134.75 4000 35.81 ?26.5 1.5pf 0.63 ?140.08 4500 27.13 ?26.16 1.35pf 0.61 ?147.71 5000 18.47 ?27.4 1.16pf 0.6 ?159.29 5500 12.46 ?45.33 0.64pf 0.63 ?172.3 6000 10.37 60.6 1.61nh 0.66 ?184.12 6500 12.45 30.73 0.75nh 0.65 ?190.37 7000 12.18 18.8 0.43nh 0.71 ?193.06 7500 12.9 17.26 0.37nh 0.72 ?194.49 8000 11.05 14.2 0.28nh 0.76 ?192.46 8500 10.9 17.57 0.33nh 0.73 ?191.44 9000 12.7 24.24 0.43nh 0.67 ?192.41 9500 23.78 26.13 0.44nh 0.61 ?208.38
lt c5562 17 5562f for more information www.linear.com/LTC5562 applications information figure 7. lo input schematic with external matching table 4. components for lo match frequency band frequency range (mhz) l4 (/nh) c4 (/pf) c5 (pf) b1 10 to 1200 0 85 1000 b2 500 to 1400 7.5nh open 1000 b3 2000 to 2550 3.3nh 1.2pf 3.3 b4 3200 to 3950 1.5nh 0.9pf 10 b5 4250 to 5050 1nh 0.2pf 0.5 b6 6050 to 6700 0 open 0.25 the measured return loss of the matched lo input port, as drawn in figure 7, is shown in figure 8. the component values required for each frequency band are given in table 4. figure 8. single-ended lo input return loss out port interface the differential output interface is shown in figure 9. the out + and out ? pins are open-collector outputs with inter - nal load resistors that provide a 720 differential output resistance at very low frequencies. the output matching network must include a low resistance dc current path to v cc to properly bias the mixer core. out + and out ? pins each require approximately 18ma of current at the maximum operating bias condition. 5 4 LTC5562 out + out ? 18ma 18ma 5562 f09 v cc figure 9. output interface 1 2 v cc l4 c5 c4 LTC5562 lo + lo ? 0.1f 5562 f07 lo 50 b1 b2 b3 b4 b5 b6 lo frequency (mhz) 0 1000 2000 3000 4000 5000 6000 7000 ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 return loss (db) lo input return loss 5562 f08
lt c5562 18 5562f for more information www.linear.com/LTC5562 applications information figure 10. out port equivalent circuit 4 5 670 0.25pf 0.3nh LTC5562 0.3nh 5562 f10 out + out ? table 5. differential out port impedance freq (mhz) impedance () refl. coeff. real* imag* parallel equivalent mag ang () 10 664.3 ? 26193.2 0.6pf 0.86 ?0.2 100 626.6 ?5116.1 0.3pf 0.85 ?1.1 500 634.2 ?858.4 0.4pf 0.85 ?6.7 1000 598.9 ?432.6 0.4pf 0.85 ?13.3 1500 538 ?293.7 0.4pf 0.83 ?19.5 2000 487.5 ?220.1 0.4pf 0.82 ?25.9 2500 444.4 ?168.6 0.4pf 0.81 ?33.4 3000 413 ?130.5 0.4pf 0.81 ?42.4 3500 414.7 ?107.9 0.4pf 0.82 ?50.2 4000 477.6 ?97.9 0.4pf 0.85 ?54.5 4500 569.7 ?94.7 0.4pf 0.87 ?56.0 5000 587.8 ?91.7 0.4pf 0.88 ?57.5 5500 533.4 ?86.8 0.3pf 0.87 ?60.2 6000 454.2 ?79.9 0.3pf 0.85 ?64.5 6500 375.4 ?73.3 0.3pf 0.83 ?69.2 7000 334 ?67.4 0.3pf 0.82 ?73.9 7500 275.4 ?59.6 0.4pf 0.81 ?81.1 8000 249.7 ?52.0 0.4pf 0.81 ?89 * parallel equivalent impedance figure 10 shows the equivalent circuit of the output and table 5 lists differential impedances for various frequencies. the impedance values are listed in parallel equivalent form, with equivalent capacitances also shown. for optimum single-ended performance, the differential output signal must be combined through an external transformer or a discrete balun circuit. in applications where differential filters or amplifiers follow the mixer, it is possible to eliminate the transformer and drive these components differentially. figure 11. output matching network schematic output matching the output matching networks for several popular fre- quency bands are shown in table 6 for both upconverting and downconverting applications. please refer to the schematic shown in figure 11 for component place - ment. most of the matching networks in table 6 are designed using a 4: 1 impedance transformer which is convenient to transform the match from 200 to 50, while providing a wide bandwidth output. for very low frequency applications, an 8: 1 impedance transformer is used as shown in table 6, downconverting application. the transformation network b1 provides a low frequency, wide bandwidth match with only 2 matching inductors. the return loss data for each matching network is shown in figures 12 and 13. v cc l3 LTC5562 5562 f11 out ? out + out 50 l1 l2 c8 5 4 c6 c7 t2
lt c5562 19 5562f for more information www.linear.com/LTC5562 applications information table 6. out port component values upconverting application frequency band frequency (ghz) l2, l3 (nh) l1 (nh) c6, c7 (pf/nh) c8 (pf) t2 b1 0.65 to 0.95 40 40 1.5pf 1000 anaren 4:1 bd0826j50200ahf b2 2.3 to 2.7 12 10 4.7nh 1000 mini circuits 4:1 ncs4-272+ b3 3.55 to 3.9 3.6 3.6 1.2pf 1000 mini circuits 4:1 ncs4-442+ b4 5.2 to 6.1 3.9 1 100pf 1000 mini circuits 4:1 ncs4-63+ downconverting application frequency band frequency (mhz) l2, l3 (nh) l1 (nh) c6, c7 (pf/nh) c8 (pf) t2 b1 2 to 400 open open 100nh 1000 mini circuits tc8-1-10ln+ b2 600 to 980 open open 33nh 1000 mini circuits 4:1 tcm4-19+ b3 1400 to 1600 5.6nh open 1.2pf 1000 mini circuits 4:1 tcm4-25+ figure 12. output return loss for upconverting application (refer to table 6 for component values) figure 13. output return loss for downconverting application (refer to table 6 for component values) b1 b2 b3 b4 output frequency (mhz) 800 1600 2400 3200 4000 4800 5600 6400 ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 return loss (db) 5562 f12 b1 b2 b3 output frequency (mhz) 0 200 400 600 800 1000 1200 1400 1600 1800 ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 return loss (db) downconverting output return loss 5562 f13
lt c5562 20 5562f for more information www.linear.com/LTC5562 applications information figure 14. enable pin interface 6 3 en v cc LTC5562 300k 5562 f14 v cc LTC5562 in ? in + lgnd r1 5562 f15 8 9 10 v cc v cc figure 15. lgnd current adjust interface table 7. performance comparison vs lgnd resistance up mixer f in = 140mhz, f out = 900mhz f in = 240mhz, f out = 3.6ghz r1 () i total (ma) gain (db) oip 3 (dbm) nf (db) gain (db) oip 3 (dbm) nf (db) 0 40 1.7 21.4 13.5 1.2 21 14.6 5 35 1.7 21.3 13.1 1.2 21 13.4 10 30 1.7 21.3 12.5 1.1 20.5 13.1 20 25 1.55 20.9 11.8 1 16 12.2 33 20 1.38 17.5 11.2 0.8 11.1 11.9 60 15 1.3 12.2 10.8 down mixer f in = 5.8ghz, f out = 800mhz r1 () i total (ma) gain (db) oip 3 (dbm) nf (db) 0 40 2.2 16.3 14.3 5 35 2 15.8 14.1 10 30 1.8 14.5 13.7 20 25 1.6 11.8 13 33 20 1.1 8.9 12.2 dc and rf grounding the LTC5562 relies on the backside ground for both rf and thermal performance. the exposed pad must be soldered to the low impedance top-side ground plane of the board. the top-side ground should also be connected to other ground layers to aid in thermal dissipation and insure a low inductance rf ground. the LTC5562 evalu - ation boards (figure 3) utilize 4 vias under the exposed pad for this purpose. in addition, pin 7, gnd, is shorted to the exposed pad on the top layer. enable interface figure 14 shows a simplified schematic of the en pin interface. to enable the part, the applied en voltage must be greater than 1.8v. if the enable function is not required, en may be connected directly to v cc . the voltage at the enable pin must not exceed the power supply voltage by more than 0.3v . otherwise, supply current may be sourced through the upper esd diode. if this is unavoid - able, a current limiting resistor should be added in series with the en pin. when the en voltage is less than 0.5v, the LTC5562 is in shutdown mode. internal bias voltages are maintained to enable fast turn-on times. refer to the electrical charac - teristics table for typical performance. lgnd (reduced current) to achieve the highest linearity, lgnd, pin 10, should be connected directly to the ground plane. however, lgnd may be used to reduce the dc current consumption of the LTC5562 by connecting a small series resistor between lgnd and gnd. in general, a lower bias current will reduce the linearity of the LTC5562, but will also reduce the noise figure. at low frequencies, the performance degradation due to reduced current will be small. as the operating frequency increases, the performance will decrease by a more significant amount. refer to table 7 for measured performance data vs lgnd resistance.
lt c5562 21 5562f for more information www.linear.com/LTC5562 table 8. downconversion output spur levels (dbc), f spur = |m ? f in ? n ? f lo | (f in = 5.8ghz, p in = ?12dbm, f lo = 5.0ghz, p lo = 0dbm, v cc = 3.3v, f out = 800mhz n 0 1 2 3 4 5 m 0 ? ?41.6 ?15.6 ?59.4 ?39.6 * 1 53.6 0** < ?75 ?38.5 < ?75 ?69.3 2 ?65.7 < ?75 ?73.9 < ?75 < ?75 < ?75 3 < ?75 < ?75 < ?75 < ?75 < ?75 < ?75 4 * < ?75 < ?75 < ?75 < ?75 < ?75 5 * < ?75 < ?75 < ?75 < ?75 < ?75 *out of range for test equipment **carrier frequency table 9. downconversion output spur levels (dbc), f spur = |m ? f in + n ? f lo | (f in = 5.8ghz, p in = ?12dbm, f lo = 5.0ghz, p lo = 0dbm, v cc = 3.3v, f out = 800mhz n 0 1 2 3 4 5 m 0 ? ?41.6 ?15.7 ?59.5 ?39.6 * 1 ?53.7 ?34.4** ?71.4 * * * 2 ?65.8 < ?75 * * * * 3 < ?75 * * * * * 4 * * * * * * 5 * * * * * * *out of range for test equipment **image frequency supply voltage high quality ceramic capacitors such as x5r or x7r should be used as bypass capacitors for v cc . the capacitors should be located on the same side of the pcb as the LTC5562 and as close to pin 6 as possible. wide, low inductance traces should be used. the ground connection to the by - pass capacitor should connect to the top side ground and to the low inductance ground plane. if possible, multiple ground vias should be used. fast ramping of the supply voltage can cause a current glitch in the internal esd protection circuits. depending on applications information the supply inductance, this could result in a supply volt - age transient that exceeds the maximum rating. a supply voltage ramp time of greater than 1ms is recommended. spurious output levels mixer spurious output levels vs harmonics of the rf and lo are tabulated in tables 8 and 9. the spur levels were measured on a standard evaluation board using the test circuit shown in figures 1 and 2. the spur frequencies can be calculated using the following equation: f spur = |m ? f in n ? f lo |
lt c5562 22 5562f for more information www.linear.com/LTC5562 typical applications the following examples illustrate the wide ranging capabili - ties of the LTC5562 , with performance in both up mixing and down mixing applications shown. these circuits were evaluated using the board layouts shown in figures 3(a) and 3(b). figure 16. upconverter schematic with 2.45ghz output figure 17. gain, noise figure and oip3 vs input frequency in the 2.45ghz application upconverter with 2.45ghz output in this example, the LTC5562 was evaluated for an appli - cation with the input frequency at 140mhz, an rf output of 2.45ghz and low side lo injection. the schematic is shown in figure 16 and the gain, nf and oip3 performance vs input frequency is shown in figure 17. also, for port matching data refer to figures 5, 8 and 12. en 1nf 12nh 10nh 1nf 10nf 2.2f 12nh 3.3v dc out 50 3.3nh 1.2pf 3.3pf 1nf 5562 f16 lo 50 10nf n/c in 50 tc1-1-13m+ 1:1 4:1 1nf 123 654 10nf 4.7nh 4.7nh ncs4-272+ in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8 f out = 2450mhz p lo = ?2dbm low side lo gain oip3 nf input frequency (mhz) 50 250 450 650 850 1050 1250 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gain (db) & oip3 (dbm) conv. gain and oip3 vs input freq. 5562 f17
lt c5562 23 5562f for more information www.linear.com/LTC5562 figure 18. phase detector test schematic figure 19. phase detector dc output and gain vs phase f in = f lo = 200mhz, p lo = 0dbm LTC5562 phase detector the output of the LTC5562 is dc-coupled and differential, therefore, it is suitable to be used as a phase detector with a positive or a negative response. the schematic is shown in figure 18 and the phase detector gain and phase response with positive slope is shown in figure 19 for a 200mhz input frequency. in this application, a 5v supply voltage is used to accommodate the voltage drop across the resistor network r1, r2 and r3 while providing the proper bias for the out pins. the en pin is connected directly to v cc to prevent exceeding the abs max limit when powered down the in and lo ports are matched between 20mhz to 600mhz , however, the LTC5562 can be used as a phase detector at higher frequencies with proper matching. the LTC5562 has a low 1/f corner and a low thermal noise floor. refer to the electrical characteristics table for typical noise floor specifications. typical applications c1 1000pf c2 1000pf c6 10nf 5v v cc 5562 f18 in 50 20mhz to 600mhz t1 tc2-72t+ lo 50 20mhz to 600mhz t2 tc2-72t+ c4 1000pf c3 1000pf c5 10nf r1 40.2 r2 40.2 r3 40.2 r4 340 in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8 out + out ? k phi v out , p in = 0dbm k phi , p in = 0dbm v out , p in = +4dbm k phi , p in = +4dbm phase difference () ?90 ?60 ?30 0 30 60 90 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ?12 ?10 ?8 ?6 ?4 ?2 0 2 4 6 8 10 12 differential output voltage (v) k phi (mv/) f in = f lo =200mhz, p lo =0dbm 5562 g19
lt c5562 24 5562f for more information www.linear.com/LTC5562 f out = 140mhz low side lo v cc = 3.3v iip3 gain nf input frequency (mhz) 900 1100 1300 1500 1700 1900 ?2 0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 22 24 gain (db) & iip3 (dbm) nf (db) total lo 5562 f21 figure 20. low power, single-ended input, downconverting mixer figure 21. conversion gain, iip3 and nf vs input frequency r1 = 13, i total = 28.5ma, p lo = ?2dbm typical applications LTC5562 low power broadband downconverter with single-ended input figure 22. return loss vs frequency r1 = 13, i total = 28.5ma figure 23. in isolation and lo leakage vs frequency input frequency (mhz) 10 400 800 1200 1600 2000 2400 ?28 ?26 ?24 ?22 ?20 ?18 ?16 ?14 ?12 ?10 ?8 ?6 ?4 return loss (db) total 5562 f22 input lo output p lo = 0dbm lo?out lo?in 2lo?out in?lo in?out frequency (mhz) 800 1000 1200 1400 1600 1800 2000 2200 2400 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 0 10 20 30 40 50 60 70 80 lo leakage (db) in isolation (db) vs frequency 5562 f23 en 1nf 1nf 10nf 2.2f 8pf 1nf 5562 f20 lo 50 in 50 13 100nh 100nh out 50 tc8-1-10ln+ 8:1 10nf 3.3v dc 7.5nh in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8
lt c5562 25 5562f for more information www.linear.com/LTC5562 information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. package description please refer to http://www.linear.com/product/LTC5562#packaging for the most recent package drawings. 2.00 0.05 (4 sides) note: 1. drawing not to scale 2. all dimensions are in millimeters 3. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 4. exposed pad shall be solder plated 5. shaded area is only a reference for pin 1 location on the top and bottom of package 0.40 0.10 bottom view?exposed pad 0.75 0.05 r = 0.125 typ 0.30 ref 0.50 ref 3 1 2 7 6 5 108 pin 1 bar top mark (see note 6) 0.200 ref 0.00 ? 0.05 (uc10) qfn rev ? 0316 0.25 0.05 0.50 bsc 0.25 0.05 recommended solder pad pitch and dimensions 1.10 0.05 0.5 0.05 0.70 0.05 2.50 0.05 package outline 0.50 bsc c 0.125 uc10 package 10-lead plastic qfn (2mm 2mm), flip chip (reference ltc dwg # 05-08-1534 rev ?) 0.3 0.05
lt c5562 26 5562f for more information www.linear.com/LTC5562 lt 1217 ? printed in usa www.linear.com/LTC5562 ? analog devices, inc. 2017 typical application related parts part number description comments mixers and modulators ltc5510 1mhz to 6ghz wideband high linearity active mixer 27dbm oi p3, 1.5db gain, up/downconversion, 3.3v or 5v supply, i cc = 105ma lt ? 5560 0.01mhz to 4ghz low power active mixer 9dbm ii p3, 2.4db gain, up/downconversion, 3.3v or 5v supply, i cc = 10ma ltc5567 300mhz to 4ghz, 3.3v dual active downconverting mixer 2db gain, 26.8dbm iip3 and 11.7db nf, 3.3v/180ma supply ltc5576 3ghz to 8ghz high linearity active upconverting mixer 25dbm oip3, ?0.6db gain, ?154dbm/hz output noise floor, 3.3v or 5v supply, i cc = 99ma amplifiers ltc6430-15 high linearity differential if amp 20mhz to 2ghz bandwidth, 15.2db gain, 50dbm oip3, 3db nf at 240mhz ltc6431-15 high linearity single-ended if amp 20mhz to 1.7ghz bandwidth, 15.5db gain, 47dbm oip3, 3.3db nf at 240mhz ltc6412 31db linear analog vga 35dbm oip3 at 240mhz, continuous gain range ?14db to 17db rf power detectors lt5538 40mhz to 3.8ghz log detector 0.8db accuracy over temperature, ?72dbm sensitivity, 75db dynamic range lt5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5582 40mhz to 10ghz rms detector 0.5db accuracy over temperature, 0.2db linearity error, 57db dynamic range adcs ltc2208 16-bit, 130msps adc 78dbfs noise floor, >83db sfdr at 250mhz ltc2153-14 14-bit, 310msps low power adc 68.8dbfs snr, 88db sfdr, 401mw power consumption rf pll/synthesizer with vco ltc6946-1/ ltc6946-2/ ltc6946-3 low noise, low spurious integer-n pll with integrated vco 373mhz to 5.79ghz, ?157dbc/hz wideband phase noise floor, ?100dbc/hz closed-loop phase noise 3.6ghz downconverter with switchable current reduced current full current en 1nf 1nf 10nf 2.2f 1.5nh 0.9pf 10pf 1nf 5562 ta02a lo 50 3.24ghz to 3.48ghz 3.6ghz in 50 tcm1-83x+ 1:1 100nh 100nh out 50 tc8-1-10ln+ 8:1 10nf 3.3v dc 34.8 in ? in + lo + out + en out ? lo ? lgnd gnd gnd v cc LTC5562 11 7 6 5 4 3 2 1 10 9 8 p lo = ?2dbm low side lo iip3, i total = 20ma gain, i total = 20ma iip3, i total = 40ma gain, i total = 40ma output frequency (mhz) 120 160 200 240 280 320 360 ?2 0 2 4 6 8 10 12 14 16 18 20 22 gain (db) & iip3 (dbm) vs output frequency, f in = 3.6ghz 5562 ta02b conversion gain and iip3 vs output frequency, f in = 3.6ghz


▲Up To Search▲   

 
Price & Availability of LTC5562

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X